Weekly Links – 5/27

Here’s this weeks links:

Technical Links:

Developer Life:

Weekly Links – 5/20

Here’s this weeks links:

Technical Links:

Developer Life:

Weekly Links – 5/13

Here’s this weeks links:

Technical Links:

Developer Life:

Getting Started with Azure (developer perspective)

So there’s a common question I’ve been getting a lot lately, and that’s “I want to learn Azure, where do I start?” And this is ultimately a very reasonable question, because as much as the cloud has permuted much of the digital world, there are still some organizations who have only recently started to adopt it.

There are many reasons people would choose to adopt the cloud, scalability, cost, flexibility, etc. But for today’s post I’m going to focus on the idea that you have already decided to go to the Azure Cloud and are looking for resources to ramp up. So I wanted to provide those here:

MS Learn: The site provides videos, reading, and walk-through’s that can assist with learning this type of material:

MS Learn for Specific Services: There are several common services out there that many people think of when they think of the cloud, and I wanted to provide some resources here to help with those:

EDX Courses: EDX is a great site with a lot of well made courses, and there are a wealth of options for Azure and Cloud, here are a few I thought relevant, but it is not an exhaustive list.

  • Architecting Distributed Applications: One common mistake, that many make with regard to the cloud is that they think of it as “just another data center”, and that’s just not true. To build effective and scalable applications, they need to be architected to take advantage of distributed compute. This course does a great job of laying out how to make sure you are architected to work in a distributed fashion.
  • Microsoft Azure Storage: A great course on the basics of using Azure Storage.
  • Microsoft Azure Virtual Machines: The virtual machine is the cornerstone of azure, and provides many options to build an scale out effectively. This is a good introduction into the most basic service in Azure.
  • Microsoft Azure App Service: The most popular service in Azure, App Service enables developers to deploy and configure apps without worrying about the machine running under-the-covers. A great overview.
  • Microsoft Azure Virtual Networks: As I mentioned above, Software Based Networking is one of the key pieces required for the cloud and this gives a good introduction into how to leverage it.
  • Databases in Azure: Another key component of the cloud is the Database, and this talks about the options for leveraging platform-as-a-service offerings for databases to eliminate your overhead for maintaining the vms.
  • Azure Security and Compliance: A key component again is security, as the digital threats are constantly evolving, and Azure provides a lot of tools to protect your workload, this is an essential piece of every architecture.
  • Building your azure skills toolkit: A good beginner course for how to get your skills up to speed with Azure.

Additional Tools and Resources, I would recommend the following:

Those are just some of the many resources that can be helpful to starting out with Azure and learning to build applications for the cloud. It is not an exhaustive list, so if you have a resource you’ve found helpful, please post it in the comments below.

Building a Solr Cluster with TerraForm – Part 1

So it’s no surprise that I very much have been talking about how amazing TerraForm is, and recently I’ve been doing a lot of investigation into Solr and how to build a scalable Solr Cluster.

So given the kubernetes template I wanted to try my hand at something similar. The goals of this project were the following:

  1. Build a generic template for creating a Solr cloud cluster with distributed shard.
  2. Build out the ability to scale the cluster for now using TerraForm to manually trigger increases to cluster size.
  3. Make the nodes automatically add themselves to the cluster.

And I could do this just using bash scripts and packer. But instead wanted to try my hand at cloud init.

But that’s going to be the end result, I wanted to walkthrough the various steps I go through to get to the end.  The first real step is to get through the installation of Solr on  linux machines to be implemented. 

So let’s start with “What is Solr?”   The answer is that Solr is an open source software solution that provides a means of creating a search engine.  It works in the same vein as ElasticSearch and other technologies.  Solr has been around for quite a while and is used by some of the largest companies that implement search to handle search requests by their customers.  Some of those names are Netflix and CareerBuilder.  See the following links below:

So I’ve decided to try my hand at this and creating my first Solr cluster, and have reviewed the getting started. 

So I ended up looking into it more, and built out the following script to create a “getting started” solr cluster.

sudo apt-get install -y apt-transport-https ca-certificates curl software-properties-common
sudo apt-get install -y gnupg-curl
sudo wget https://www.apache.org/dist/lucene/solr/8.0.0/solr-8.0.0.zip.asc | sudo apt-key add

sudo apt-get update -y
sudo apt-get install unzip
sudo wget http://mirror.cogentco.com/pub/apache/lucene/solr/8.0.0/solr-8.0.0.zip

sudo unzip -q solr-8.0.0.zipls
sudo mv solr-8.0.0 /usr/local/bin/solr-8.0.0 -f
sudo rm solr-8.0.0.zip -f

sudo apt-get install -y default-jdk

sudo chmod +x /usr/local/bin/solr-8.0.0/bin/solr
sudo chmod +x /usr/local/bin/solr-8.0.0/example/cloud/node1/solr
sudo chmod +x /usr/local/bin/solr-8.0.0/example/cloud/node2/solr
sudo /usr/local/bin/solr-8.0.0/bin/bin/solr -e cloud -noprompt

The above will configure a “getting started solr cluster” that leverages all the system defaults and is hardly a production implementation. So my next step will be to change this. But for the sake of getting something running, I took the above script and moved it into a packer template using the following json. The above script is the “../scripts/Solr/provision.sh”

{
  "variables": {
    "deployment_code": "",
    "resource_group": "",
    "subscription_id": "",
    "location": "",
    "cloud_environment_name": "Public"
  },
  "builders": [{   
    "type": "azure-arm",
    "cloud_environment_name": "{{user `cloud_environment_name`}}",
    "subscription_id": "{{user `subscription_id`}}",

    "managed_image_resource_group_name": "{{user `resource_group`}}",
    "managed_image_name": "Ubuntu_16.04_{{isotime \"2006_01_02_15_04\"}}",
    "managed_image_storage_account_type": "Premium_LRS",

    "os_type": "Linux",
    "image_publisher": "Canonical",
    "image_offer": "UbuntuServer",
    "image_sku": "16.04-LTS",

    "location": "{{user `location`}}",
    "vm_size": "Standard_F2s"
  }],
  "provisioners": [
    {
      "type": "shell",
      "script": "../scripts/ubuntu/update.sh"
    },
    {
      "type": "shell",
      "script": "../scripts/Solr/provision.sh"
    },
    {
      "execute_command": "chmod +x {{ .Path }}; {{ .Vars }} sudo -E sh '{{ .Path }}'",
      "inline": [
        "/usr/sbin/waagent -force -deprovision+user && export HISTSIZE=0 && sync"
      ],
      "inline_shebang": "/bin/sh -e",
      "type": "shell"
    }]
}

The only other script mentioned is the “update.sh”, which has the following logic in it, to install the cli and update the ubuntu image:

#! /bin/bash

sudo apt-get update -y
sudo apt-get upgrade -y

#Azure-CLI
AZ_REPO=$(sudo lsb_release -cs)
sudo echo "deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/ $AZ_REPO main" | sudo tee /etc/apt/sources.list.d/azure-cli.list
sudo curl -L https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
sudo apt-get install apt-transport-https
sudo apt-get update && sudo apt-get install azure-cli

So the above gets me to a good place for being able to create an image with it configured.

For next steps I will be doing the following:

  • Building a more “production friendly” implementation of Solr into the script.
  • Investigating leveraging cloud init instead of the “golden image” experience with Packer.
  • Building out templates around the use of Zookeeper for managing the nodes.


Where to I start – Service Fabric?

So containers have become an essential part of modern application development. I would go as far to say that containers and micro services have had a similar impact to software development as “Object Oriented Programming”.

Now that being that I have been talking to a lot of people who use Monolithic applications and are looking for a way to break down their existing applications into a micro service approach and support the idea of using existing infrastructure, and don’t necessarily want to deploy on Linux for a variety of reasons.

Now based on that option, there is an established technology that can leverage your docker containers and orchestrate them in a windows environment. And that is Service Fabric.

I find the learning curve if you are looking at a monolithic application and breaking it into micro services is a lot easier to swallow with Service Fabric, and it does help you to break up your applications to make better use compute on your machines in the cluster and you can still leverage docker.

Below are some links to help you get started with Service Fabric if you are looking for information on this technology:

Concepts and Architecture:

Service Fabric Overview:

Coding Samples:

Videos:

Building out Azure Container Registry in Terraform

So I’ve previously done posts on the TerraForm template that I built to support creating a kubernetes cluster. The intention behind this was to provide a solution for standing up a kubernetes cluster in Azure Government. To see more information on that cluster I have a blog post here.

Now one of the questions I did get with it, is “How do we integrate this with Azure Container Registry?” And for those not familiar, Azure Container Registry is a PaaS offering that Azure provides that allows you to push your container images to a docker registry and not have to manage the underlying VM, patching, updates, and other maintenance. This allows you to just pay for the space to store the container images, which admittedly are very small.

The first part of implementing this logic was to create the Container Registry in TerraForm by using the following.

A key note is that the use of the “count” variable is to enable that this registry will not be created unless you create a “lkma” which is the VM that operates as the master.

resource "azurerm_container_registry" "container-registry" {
  count = "${lookup(var.instance_counts, "lkma", 0) == 0 ? 0 : 1}"
  name                = "containerRegistry1"
  resource_group_name = "${azurerm_resource_group.management.name}"
  location            = "${var.azure_location}"
  admin_enabled       = true
  sku                 = "Standard"

  depends_on = ["azurerm_role_assignment.kub-ad-sp-ra-kv1"]
}

So honestly didn’t require that much in the way of work. For the next part it is literally just adding a few lines of code to enable the connection between the registry and the kubernetes cluster. Those lines are the following :

echo 'Configure ACR registry for Kubernetes cluster'
kubectl create secret docker-registry <SECRET_NAME> --docker-server $5 --docker-email $6 --docker-username=$7 --docker-password $8
echo 'Script Completed'

So really that is about it. I’ve already made these changes to the GitHub template, so please check it out. The above lines of code allow a user principal information that I pass to the script to be used to connect the azure container registry to my cluster. That’s really about it.

Breaking Down Monitoring in Azure

So let’s talk monitoring in Azure, and honestly this is a topic that makes most people start to become a “deer in headlights”. And the reason is that most executives love to say “We need to have a great monitoring story” but monitoring is a massive topic and most don’t know where to begin.

And the truth is that it is a huge and multi-faceted topic that have a variety of solutions that can be applied in a variety of ways. So I wanted to gather some resources to help give you if your trying to figure out which way is up.

MSLearn:  Provides guided learning through articles, hands on labs and videos on a variety of topics.  Some of the key ones I thought would be of interest given your ask are:

When it comes to monitoring we have several products and services that are at the core of providing that support:

Additionally we have videos at a site called Channel 9 on a variety of topics

Links for Kusto the Log Analytics Querying Language

Deploying ARM Templates through CLI

Links for Full Monitoring Solution

Links for Logs on Log Analytics and details of data captured

Migrating VMs to Azure DevTest Labs

So here’s something I’ve been running into a lot, and at the heart of it is cost management. No one wants to spend more money than they need to and that is especially true if you are running your solutions in the cloud. And for most organizations, a big cost factor can be running lower environments.

So the situation is this, you have a virtual machine, be it a developer machine, or some form of lower environment (Dev, test, QA, etc). And the simple fact is that you have to pay for this environment to be able to run testing and ensure that everything works when you deploy to production. So its a necessary evil, and extremely important if you are adhering to DevOps principals. Now the unfortunate part of this, is that you likely only really use these lower environments during work hours. They probably aren’t exposed to the outside world, and they probably aren’t being hit by customers in any fashion.

So ultimately, that means that you are paying for this environment for 24/7 but only using it for 12 hours a day. Which means you are basically paying for double what you need.

Enter DevTest Labs, which allows you to create VMs and artifacts to make it easy to spin-up and spin-down environments without any effort on your part so that you can save money with regard to running these lower environments.

Now the biggest problem then becomes, “That’s great, but how do I move my existing VMs into new DevTest lab, how do I do that?” The answer is it can be done, via script, and I’ve written a script to that here.

#The resource group information, the source and destination
resourceGroupName="<Original Resource Group>"
newResourceGroupName="<Destination Resource Group>"

#The name of the VM you wish to migrate
vmName="<VM Name>"
newVmName="<New VM Name>"

#The OS image of the VM
imageName="Windows Server 2016 Datacenter"
osType="Windows"

#The size of the VM
vmsize="<vm size>"
#The location of the VM
location="<location>"
#The admin username for the newly created vm
adminusername="<username>"

#The suffix to add to the end of the VM
osDiskSuffix="_lab.vhd"
#The type of storage for the data disks
storageType="Premium_LRS"

#The VNET information for the VM that is being migrated
vnet="<vnet name>"
subnet="<Subnet name>"

#The name of the lab to be migrated to
labName="<Lab Name>"

#The information about the storage account associated with the lab
newstorageAccountName="<Lab account name>"
storageAccountKey="<Storage account key>"
diskcontainer="uploads"

echo "Set to Government Cloud"
sudo az cloud set --name AzureUSGovernment

#echo "Login to Azure"
#sudo az login

echo "Get updated access token"
sudo az account get-access-token

echo "Create new Resource Group"
az group create -l $location -n $newResourceGroupName

echo "Deallocate current machine"
az vm deallocate --resource-group $resourceGroupName --name $vmName

echo "Create container"
az storage container create -n $diskcontainer --account-name $newstorageAccountName --account-key $storageAccountKey

osDisks=$(az vm show -d -g $resourceGroupName -n $vmName --query "storageProfile.osDisk.name") 
echo ""
echo "Copy OS Disks"
echo "--------------"
echo "Get OS Disk List"

osDisks=$(echo "$osDisks" | tr -d '"')

for osDisk in $(echo $osDisks | tr "[" "\n" | tr "," "\n" | tr "]" "\n" )
do
   echo "Copying OS Disk $osDisk"

   echo "Get url with token"
   sas=$(az disk grant-access --resource-group $resourceGroupName --name $osDisk --duration-in-seconds 3600 --query [accessSas] -o tsv)

   newOsDisk="$osDisk$osDiskSuffix"
   echo "New OS Disk Name = $newOsDisk"

   echo "Start copying $newOsDisk disk to blob storage"
   az storage blob copy start --destination-blob $newOsDisk --destination-container $diskcontainer --account-name $newstorageAccountName --account-key $storageAccountKey --source-uri $sas

   echo "Get $newOsDisk copy status"
   while [ "$status"=="pending" ]
   do
      status=$(az storage blob show --container-name $diskcontainer --name $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.status')
      status=$(echo "$status" | tr -d '"')
      echo "$newOsDisk Disk - Current Status = $status"

      progress=$(az storage blob show --container-name $diskcontainer --name $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.progress')
      echo "$newOsDisk Disk - Current Progress = $progress"
      sleep 10s
      echo ""

      if [ "$status" != "pending" ]; then
      echo "$newOsDisk Disk Copy Complete"
      break
      fi
   done

   echo "Get blob url"
   blobSas=$(az storage blob generate-sas --account-name $newstorageAccountName --account-key $storageAccountKey -c $diskcontainer -n $newOsDisk --permissions r --expiry "2019-02-26" --https-only)
   blobSas=$(echo "$blobSas" | tr -d '"')
   blobUri=$(az storage blob url -c $diskcontainer -n $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey)
   blobUri=$(echo "$blobUri" | tr -d '"')

   echo $blobUri

   blobUrl=$(echo "$blobUri")

   echo "Create image from $newOsDisk vhd in blob storage"
   az group deployment create --name "LabMigrationv1" --resource-group $newResourceGroupName --template-file customImage.json --parameters existingVhdUri=$blobUrl --verbose

   echo "Create Lab VM - $newVmName"
   az lab vm create --lab-name $labName -g $newResourceGroupName --name $newVmName --image "$imageName" --image-type gallery --size $vmsize --admin-username $adminusername --vnet-name $vnet --subnet $subnet
done 

dataDisks=$(az vm show -d -g $resourceGroupName -n $vmName --query "storageProfile.dataDisks[].name") 
echo ""
echo "Copy Data Disks"
echo "--------------"
echo "Get Data Disk List"

dataDisks=$(echo "$dataDisks" | tr -d '"')

for dataDisk in $(echo $dataDisks | tr "[" "\n" | tr "," "\n" | tr "]" "\n" )
do
   echo "Copying Data Disk $dataDisk"

   echo "Get url with token"
   sas=$(az disk grant-access --resource-group $resourceGroupName --name $dataDisk --duration-in-seconds 3600 --query [accessSas] -o tsv)

   newDataDisk="$dataDisk$osDiskSuffix"
   echo "New OS Disk Name = $newDataDisk"

   echo "Start copying disk to blob storage"
   az storage blob copy start --destination-blob $newDataDisk --destination-container $diskcontainer --account-name $newstorageAccountName --account-key $storageAccountKey --source-uri $sas

   echo "Get copy status"
   while [ "$status"=="pending" ]
   do
      status=$(az storage blob show --container-name $diskcontainer --name $newDataDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.status')
      status=$(echo "$status" | tr -d '"')
      echo "Current Status = $status"

      progress=$(az storage blob show --container-name $diskcontainer --name $newDataDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.progress')
      echo "Current Progress = $progress"
      sleep 10s
      echo ""

      if [ "$status" != "pending" ]; then
      echo "Disk Copy Complete"
      break
      fi
   done
done 

echo "Script Completed"

So the above script breaks out into a couple of key pieces. The first part is the following parts needs to happen:

  • Create the destination resource group
  • Deallocate the machine
  • Create a container for the disks to be migrated to
echo "Create new Resource Group"
az group create -l $location -n $newResourceGroupName

echo "Deallocate current machine"
az vm deallocate --resource-group $resourceGroupName --name $vmName

echo "Create container"
az storage container create -n $diskcontainer --account-name $newstorageAccountName --account-key $storageAccountKey

The next process is to identify the OS disk for the VM, and copy the disk from its current location, over to the storage account associated with DevTest lab. The next key part is to create a custom image based on that VM and then create a VM based on that image.

osDisks=$(az vm show -d -g $resourceGroupName -n $vmName --query "storageProfile.osDisk.name") 
echo ""
echo "Copy OS Disks"
echo "--------------"
echo "Get OS Disk List"

osDisks=$(echo "$osDisks" | tr -d '"')

for osDisk in $(echo $osDisks | tr "[" "\n" | tr "," "\n" | tr "]" "\n" )
do
   echo "Copying OS Disk $osDisk"

   echo "Get url with token"
   sas=$(az disk grant-access --resource-group $resourceGroupName --name $osDisk --duration-in-seconds 3600 --query [accessSas] -o tsv)

   newOsDisk="$osDisk$osDiskSuffix"
   echo "New OS Disk Name = $newOsDisk"

   echo "Start copying $newOsDisk disk to blob storage"
   az storage blob copy start --destination-blob $newOsDisk --destination-container $diskcontainer --account-name $newstorageAccountName --account-key $storageAccountKey --source-uri $sas

   echo "Get $newOsDisk copy status"
   while [ "$status"=="pending" ]
   do
      status=$(az storage blob show --container-name $diskcontainer --name $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.status')
      status=$(echo "$status" | tr -d '"')
      echo "$newOsDisk Disk - Current Status = $status"

      progress=$(az storage blob show --container-name $diskcontainer --name $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey --output json | jq '.properties.copy.progress')
      echo "$newOsDisk Disk - Current Progress = $progress"
      sleep 10s
      echo ""

      if [ "$status" != "pending" ]; then
      echo "$newOsDisk Disk Copy Complete"
      break
      fi
   done

   echo "Get blob url"
   blobSas=$(az storage blob generate-sas --account-name $newstorageAccountName --account-key $storageAccountKey -c $diskcontainer -n $newOsDisk --permissions r --expiry "2019-02-26" --https-only)
   blobSas=$(echo "$blobSas" | tr -d '"')
   blobUri=$(az storage blob url -c $diskcontainer -n $newOsDisk --account-name $newstorageAccountName --account-key $storageAccountKey)
   blobUri=$(echo "$blobUri" | tr -d '"')

   echo $blobUri

   blobUrl=$(echo "$blobUri")

   echo "Create image from $newOsDisk vhd in blob storage"
   az group deployment create --name "LabMigrationv1" --resource-group $newResourceGroupName --template-file customImage.json --parameters existingVhdUri=$blobUrl --verbose

   echo "Create Lab VM - $newVmName"
   az lab vm create --lab-name $labName -g $newResourceGroupName --name $newVmName --image "$imageName" --image-type gallery --size $vmsize --admin-username $adminusername --vnet-name $vnet --subnet $subnet
done 

Now part of the above is to use a ARM template to create the image. The template is below:

{
  "$schema": "http://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
  "contentVersion": "1.0.0.0",
  "parameters": {
    "existingLabName": {
      "type": "string",
      "defaultValue":"KevinLab",
      "metadata": {
        "description": "Name of an existing lab where the custom image will be created or updated."
      }
    },
    "existingVhdUri": {
      "type": "string",
      "metadata": {
        "description": "URI of an existing VHD from which the custom image will be created or updated."
      }
    },
    "imageOsType": {
      "type": "string",
      "defaultValue": "windows",
      "metadata": {
        "description": "Specifies the OS type of the VHD. Currently 'Windows' and 'Linux' are the only supported values."
      }
    },
    "isVhdSysPrepped": {
      "type": "bool",
      "defaultValue": true,
      "metadata": {
        "description": "If the existing VHD is a Windows VHD, then specifies whether the VHD is sysprepped (Note: If the existing VHD is NOT a Windows VHD, then please specify 'false')."
      }
    },
    "imageName": {
      "type": "string",
      "defaultValue":"LabVMMigration",
      "metadata": {
        "description": "Name of the custom image being created or updated."
      }
    },
    "imageDescription": {
      "type": "string",
      "defaultValue": "",
      "metadata": {
        "description": "Details about the custom image being created or updated."
      }
    }
  },
  "variables": {
    "resourceName": "[concat(parameters('existingLabName'), '/', parameters('imageName'))]",
    "resourceType": "Microsoft.DevTestLab/labs/customimages"
  },
  "resources": [
    {
      "apiVersion": "2018-10-15-preview",
      "name": "[variables('resourceName')]",
      "type": "Microsoft.DevTestLab/labs/customimages",
      "properties": {
        "vhd": {
          "imageName": "[parameters('existingVhdUri')]",
          "sysPrep": "[parameters('isVhdSysPrepped')]",
          "osType": "[parameters('imageOsType')]"
        },
        "description": "[parameters('imageDescription')]"
      }
    }
  ],
  "outputs": {
    "customImageId": {
      "type": "string",
      "value": "[resourceId(variables('resourceType'), parameters('existingLabName'), parameters('imageName'))]"
    }
  }
}

So if you run the above, it will create the new VM under the DevTest lab.

Creating Terraform Scripts from existing resources in Azure Government

Lately I’ve been doing a lot of work with TerraForm lately, and one of the questions I’ve gotten a lot is the ability to create terraform scripts based on existing resources.

So the use case is the following: You are working on projects, or part of an organization that has a lot of resources in Azure, and you want to start using terraform for a variety of reasons:

  • Being able to iterating in your infrastructure
  • Consistency of environment management
  • Code History of changes

The good new is there is a tool for that. The tool can be found here on github along with a list of pre-requisites.  I’ve used this tool in Azure Commercial and have been really happy with the results. I wanted to use this with Azure Commercial.

NOTE => The Pre-reqs are listed on the az2tf tool, but one they didn’t list I needed to install was jq, using “apt-get install jq”.

Next we need to configure our environment for running terraform.  For me, I ran this using the environment I had configured for Terraform.  In the Git repo, there is a PC Setup document that walks you through how to configure your environment with VS code and Terraform.  I then was able to clone the git repo, and execute the az2tf tool using a Ubuntu subsystem on my Windows 10 machine. 

Now, the tool, az2f, was built to work with azure commercial, and there is one change that has to be made for it to leverage azure government 

Once you have the environment created, and the pre-requisites are all present, you can open a “Terminal” window in vscode, and connect to Azure Government. 

In the ./scripts/resources.sh and ./scripts/resources2.sh files, you will find the following on line 9:

ris=`printf “curl -s  -X GET -H \”Authorization: Bearer %s\” -H \”Content-Type: application/json\” https://management.azure.com/subscriptions/%s/resources?api-version=2017-05-10” $bt $sub`

Please change this line to the following:

ris=`printf “curl -s  -X GET -H \”Authorization: Bearer %s\” -H \”Content-Type: application/json\” https://management.usgovcloudapi.net/subscriptions/%s/resources?api-version=2017-05-10” $bt $sub`

You can then run the “az2tf” tool by running the following command in the terminal:

./az2tf.sh -s {Subscription ID} -g {Resource Group Name}

This will generate the script, and you will see a new folder created in the structure marked “tf.{Subscription ID}” and inside of it will be all configuration steps to setup the environment.